Radiomics and Deep Learning
نویسندگان
چکیده
منابع مشابه
Discovery Radiomics for Computed Tomography Cancer Detection
Lung cancer is the leading cause for cancer related deaths. As such, there is an urgent need for a streamlined process that can allow radiologists to provide diagnosis with greater efficiency and accuracy. A powerful tool to do this is radiomics: a high-dimension imaging feature set. In this study, we take the idea of radiomics one step further by introducing the concept of discovery radiomics ...
متن کاملDiscovery Radiomics via Evolutionary Deep Radiomic Sequencer Discovery for Pathologically-Proven Lung Cancer Detection
While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concep...
متن کاملDissimilarity-based representation for radiomics applications
Radiomics is a term which refers to the analysis of the large amount of quantitative tumor features extracted from medical images to find useful predictive, diagnostic or prognostic information. Many recent studies have proved that radiomics can offer a lot of useful information that physicians cannot extract from the medical images and can be associated with other information like gene or prot...
متن کاملDiscovery Radiomics via Deep Multi-Column Radiomic Sequencers for Skin Cancer Detection
While skin cancer is the most diagnosed form of cancer in men and women, with more cases diagnosed each year than all other cancers combined, sufficiently early diagnosis results in very good prognosis and as such makes early detection crucial. While radiomics have shown considerable promise as a powerful diagnostic tool for significantly improving oncological diagnostic accuracy and efficiency...
متن کاملAdvanced quantitative MRI radiomics features for recurrence prediction in glioblastoma multiform patients
Introduction: Advanced quantitative information such as radiomics features derived from magnetic resonance (MR) image may be useful for outcome prediction, prognostic models or response biomarkers in Glioblastoma (GBM). The main aim of this study was to evaluate MRI radiomics features for recurrence prediction in glioblastoma multiform. Materials and Methods:</str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018